Multiple Molecular Mechanisms Cause Reproductive Isolation between Three Yeast Species

نویسندگان

  • Jui-Yu Chou
  • Yin-Shan Hung
  • Kuan-Huei Lin
  • Hsin-Yi Lee
  • Jun-Yi Leu
چکیده

Nuclear-mitochondrial conflict (cytonuclear incompatibility) is a specific form of Dobzhansky-Muller incompatibility previously shown to cause reproductive isolation in two yeast species. Here, we identified two new incompatible genes, MRS1 and AIM22, through a systematic study of F2 hybrid sterility caused by cytonuclear incompatibility in three closely related Saccharomyces species (S. cerevisiae, S. paradoxus, and S. bayanus). Mrs1 is a nuclear gene product required for splicing specific introns in the mitochondrial COX1, and Aim22 is a ligase encoded in the nucleus that is required for mitochondrial protein lipoylation. By comparing different species, our result suggests that the functional changes in MRS1 are a result of coevolution with changes in the COX1 introns. Further molecular analyses demonstrate that three nonsynonymous mutations are responsible for the functional differences of Mrs1 between these species. Functional complementation assays to determine when these incompatible genes altered their functions show a strong correlation between the sequence-based phylogeny and the evolution of cytonuclear incompatibility. Our results suggest that nuclear-mitochondrial incompatibility may represent a general mechanism of reproductive isolation during yeast evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetically Engineering Yeast to Understand Molecular Modes of Speciation

An understanding of the molecular mechanisms of speciation (reproductive isolation) is potentially very powerful as it should help us appreciate the processes that differentiate closely related organisms such as humans and chimpanzees. Currently, however, our understanding of such mechanisms is far from complete. The closely related yeast, Saccharomyces cerevisiae and Saccharomyces mikatae, rep...

متن کامل

When nuclear-encoded proteins and mitochondrial RNAs do not get along, species split apart.

The emergence of barriers to reproduction between two populations is one of the most important features of speciation. Among the mechanisms of reproductive isolation are incompatible interactions between gene products of the parental species that reduce the fitness of hybrid individuals. The accumulation of such incompatibilities is described by the Bateson–Dobzhansky–Muller model (BDM) [1] tha...

متن کامل

Toward Genome-Wide Identification of Bateson–Dobzhansky–Muller Incompatibilities in Yeast: A Simulation Study

The Bateson-Dobzhansky-Muller (BDM) model of reproductive isolation by genetic incompatibility is a widely accepted model of speciation. Because of the exceptionally rich biological information about the budding yeast Saccharomyces cerevisiae, the identification of BDM incompatibilities in yeast would greatly deepen our understanding of the molecular genetic basis of reproductive isolation and ...

متن کامل

Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis.

Little is known about the physiological responses and genetic mutations associated with reproductive isolation between species, especially for postmating prezygotic isolating barriers. Here, we examine changes in gene expression that accompany the expression of 'unilateral incompatibility' (UI)-a postmating prezygotic barrier in which fertilization is prevented by gamete rejection in the reprod...

متن کامل

Chromosomal Rearrangements as a Major Mechanism in the Onset of Reproductive Isolation in Saccharomyces cerevisiae

Understanding the molecular basis of how reproductive isolation evolves between individuals from the same species offers valuable insight into patterns of genetic differentiation as well as the onset of speciation [1, 2]. The yeast Saccharomyces cerevisiae constitutes an ideal model partly due to its vast ecological range, high level of genetic diversity [3-6], and laboratory-amendable sexual r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010